Definitions

Solute The substance that is being dissolved in a solution

<u>Solvent</u> The substance that something is being dissolved into

<u>Solution</u> The solute and solvent combined

<u>Solubility</u>

The amount of solute that can be dissolved at a given temperature

<u>Saturated solution</u> Maximum amount of solute dissolved

<u>Unsaturated solution</u> Less than the maximum amount of solute dissolved

<u>Supersaturated solution</u> More than the maximum amount of solute dissolved

Dissolve

When molecules of solute are surrounded by molecules of solvent and are pulled apart from other solute molecules

Dissociate

When an ionic compound has it's ionic bond disrupted by solvent molecules and it breaks into individual ions

Electrolytes

Ionic solutes that dissociate into ions in a solution

Non-electrolytes Covalent compounds that do not dissociate into ions

in a solution

Heat of solution

The energy involved when solute dissolves/ dissociates

Colligative Properties

Properties whose value depend only on the number of solute particles, and not on what they are. Examples: boiling point elevation, freezing point depression, osmotic pressure.

<u>Osmotic Pressure</u>

The minimum pressure that stops osmosis.

Equations

$$Mass Percent = \left(\frac{mass of solute}{mass of solution}\right) x \ 100$$

Parts per Million =
$$\left(\frac{\text{mass of solute}}{\text{mass of solution}}\right) x 1,000,000$$

Parts per Billion =
$$\left(\frac{mass \ of \ solute}{mass \ of \ solution}\right) x \ 10^9$$

$$Grams \ per \ Liter = \left(\frac{mass \ of \ solute}{volume \ of \ solution}\right)$$

Mole fraction of
$$A = Xa = \left(\frac{n_A}{n_A + n_B + \cdots}\right)$$

Mole % of
$$A = Xa = \left(\frac{n_A}{n_A + n_B + \cdots}\right) x \ 100$$

$$Molarity = M = \left(\frac{moles \ of \ solute}{Liters \ of \ solution}\right)$$

$$Dilutions = M_1 V_1 = M_2 V_2$$

$$Molality = m = \left(\frac{moles \ of \ solute}{kilograms \ of \ solvent}\right)$$

$$\Delta H_{solvn} = \Delta H_{solute} + \Delta H_{solvent} + \Delta H_{mix}$$

 $P_{sol^{+}n=} X_{solvent} P_{solvent}^{\circ}$

$$\Delta P = P_{solvent}^{\circ} - P_{solution} = X_{solute} P_{solvent}^{\circ}$$

$$P_{total} = P_A^- + P_B = X_A P_A^{\circ} + X_B P_B^{\circ}$$

$$\Delta T = i \bullet K_{f} \bullet m_{solute}$$

 $\Delta T = i \bullet K_b \bullet m_{solute}$

$$\pi = iMRT$$